

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)

(Accredited by NBA for Civil, EEE, Mech., ECE & CSE)

(Accredited by NAAC with 'A+' Grade)

Puttur -517583, Tirupati District, A.P. (India)

QUESTION BANK (DESCRIPTIVE)

Subject with Code	EMBEDDED SYSTEMS DESIGN (23EC0451)	Course & Branch	B.Tech – CSE, CCC & CSIT
Year & Sem	III & II	Regulation	R23

UNIT - I

Introduction to Embedded Systems

1	a) Define an embedded system.	[L1][CO1]	[2 M]
	b) List any two purposes of embedded systems.	[L3][CO1]	[2 M]
	c) Mention any two characteristics of embedded systems.	[L1][CO1]	[2 M]
	d) What is meant by requirements analysis in the embedded system design process?	[L2][CO6]	[2 M]
	e) List any two applications of embedded systems.	[L1][CO1]	[2 M]
2	a) Define embedded system and List the various processors types of embedded processors.	[L1][CO1]	[05 M]
	b) List any Five differences between Embedded Systems Vs General Computing.	[L1][CO1]	[05 M]
3	a) Brief the History of Embedded Systems.	[L1][CO1]	[05 M]
	b) Sketch the various classifications of Embedded systems.	[L3][CO1]	[05 M]
4	a) Explain the classification of Embedded systems based on generation	[L2][CO1]	[05 M]
	b) Explain the classification of Embedded systems based on Complexity.	[L1][CO1]	[05 M]
5	Explain briefly about the purpose of an Embedded systems	[L4][CO1]	[10 M]
6	With a neat diagram, explain the design process of an embedded system	[L2][CO6]	[10 M]
7	a) Describe requirement analysis in embedded system design. .	[L2][CO6]	[05 M]
	b) Explain system specification and its importance.	[L2][CO6]	[05 M]
8	With the neat sketch, Explain architecture of embedded system.	[L3][CO2]	[10 M]
9	Explain system integration and testing techniques in embedded systems.	[L2][CO6]	[10 M]
10	Briefly discuss the major application of Embedded systems.	[L2][CO1]	[10 M]
11	Explain the characteristics of embedded systems with suitable examples.	[L2][CO1]	[10 M]

UNIT - II
Typical Embedded System

1	a) Define a domain-specific processor	[L1][CO2]	[2M]
	b) Define PLD and give one example.	[L1][CO2]	[2M]
	c) List any two types of ROM used in embedded systems.	[L1][CO2]	[2M]
	d) What is a sensor? Give some example.	[L2][CO2]	[2M]
	e) What is the use of a push button switch in embedded systems?	[L3][CO2]	[2M]
2	Explain the core of an embedded system with a neat block diagram.	[L2][CO2]	[10 M]
3	Explain general-purpose processors and domain-specific processors used in embedded systems.	[L2][CO2]	[10M]
4	a) Explain the role of ASICs in embedded systems.	[L3][CO2]	[05 M]
	b) Describe PLDs and COTs with suitable examples.	[L3][CO2]	[05 M]
5	Explain The Memory Organization of an Embedded System.	[L2][CO2]	[10 M]
6	a) Explain Memory Shadowing in Embedded Systems.	[L3][CO2]	[05 M]
	b) Discuss Criteria for Memory Selection in Embedded System Design.	[L3][CO2]	[05 M]
7	a) Differentiate static RAM and Dynamic RAM.	[L4][CO2]	[05 M]
	b) Explain Sensors and Actuators used in Embedded Systems.	[L2][CO3]	[05 M]
8	a) Discuss in detail about 7-segment LED display	[L2][CO2]	[05 M]
	b) Describe the operation of Relay and Piezo buzzer.	[L3][CO2]	[05 M]
9	a) Explain Push Button Switch used in Embedded Systems.	[L2][CO2]	[05 M]
	b) Explain the need for a Reset Circuit in embedded systems	[L2][CO2]	[05 M]
10	Explain the role of following in embedded system. i) Brownout Protection ii) Oscillator Circuit	[L2][CO2]	[10 M]
11	Explain the role of following circuitry in embedded system. i) Real-Time Clock ii) Watchdog Timer	[L2][CO2]	[10 M]

UNIT - IIICommunication Interface

1	a) List any two signal lines used in SPI communication. b) Mention any one application of SPI in embedded systems. c) Give application of I2C d) What type of communication is CAN (serial/parallel)? e) Why is ZigBee preferred in sensor networks?	[L1][CO3]	[2M]
2	a) Define on-board communication interface & List it. b) Differentiate between I2C and SPI communication protocols	[L1][CO3]	[05 M]
3	Explain the working of I2C communication protocols with suitable diagrams	[L1][CO4]	[10 M]
4	What is serial peripheral interface explain in detail.	[L2][CO3]	[10 M]
5	Explain the architecture and features of CAN protocol used in embedded systems.	[L3][CO3]	[10 M]
6	a) Explain briefly about the serial communication Interface. b) Explain the Parallel interface with suitable diagram	[L2][CO3]	[05 M]
7	a) Explain the concept of RS232 communication Interface b) Explain the concept of RS485 communication Interface	[L2][CO3]	[05 M]
8	a) Explain in detail about the USB and its types of data transfer b) Explain briefly about the Infrared (IR) communication.	[L2][CO3]	[05 M]
9	a) Explain the features of Bluetooth. b) Explain the features of Wi-Fi network	[L2][CO3]	[05 M]
10	a) Explain the concept of Zigbee module. b) Explain briefly about the GSM communication.	[L2][CO3]	[05 M]
11	Draw & Explain the architecture of GPRS.	[L1][CO3]	[10 M]

UNIT - IV**Embedded Firmware Design and Development**

1	a) What is embedded firmware?	[L1][CO4]	[2M]
	b) What is OS-based firmware design approach?	[L2][CO4]	[2M]
	c) What is a high-level language in embedded firmware development?	[L1][CO4]	[2M]
	d) List two firmware design approaches used in embedded systems.	[L1][CO4]	[2M]
	e) Give advantages of high-level language-based firmware development.	[L3][CO4]	[2M]
2	Explain embedded firmware and its role in embedded systems.	[L2][CO4]	[10M]
3	Explain the embedded firmware design approaches used in embedded systems.	[L2][CO4]	[10M]
4	a) Explain the super loop-based firmware design approach.	[L3][CO4]	[05M]
	b) List the advantages and limitations of the super loop approach.	[L3][CO4]	[05M]
5	a) Explain the operating system-based firmware design approach.	[L3][CO4]	[05M]
	b) Compare super loop-based approach and OS-based approach.	[L3][CO4]	[05M]
6	Explain the steps involved in embedded firmware development.	[L2][CO4]	[10M]
7	Explain assembly language-based firmware development in embedded systems.	[L2][CO4]	[10M]
8	a) Explain high-level language-based firmware development.	[L2][CO4]	[05M]
	b) List the advantages of using high-level languages in embedded systems.	[L2][CO4]	[05M]
9	Explain the differences between assembly language and high-level language-based firmware development.	[L3][CO4]	[10M]
10	a) Explain the role of compilers, assemblers, and linkers in firmware development.	[L2][CO4]	[05M]
	b) Explain briefly about the firmware build process.	[L2][CO4]	[05M]
11	Explain debugging and testing techniques used in embedded firmware development.	[L3][CO4]	[10M]

UNIT -V**RTOS based Embedded System Design**

1	a) What is an operating system in embedded systems?	[L1][CO5]	[2M]
	b) Name any two types of operating systems used in embedded systems.	[L1][CO5]	[2M]
	c) What is a task in an RTOS?	[L2][CO5]	[2M]
	d) What is the difference between preemptive and non-preemptive scheduling?	[L2][CO5]	[2M]
	e) Give one method of task synchronization in RTOS.	[L3][CO5]	[2M]
2	Explain the basics of an operating system and its role in embedded systems.	[L2][CO5]	[10 M]
3	Explain the types of operating systems used in embedded systems	[L2][CO5]	[10 M]
4	a) Define tasks, processes, and threads.	[L2][CO5]	[05 M]
	b) Explain the difference between multiprocessing and multitasking.	[L2][CO5]	[05 M]
5	Explain briefly about the task scheduling in RTOS.	[L3][CO5]	[10 M]
6	a) Explain shared memory and message passing techniques for task communication.	[L3][CO5]	[05 M]
	b) Explain Remote Procedure Call (RPC) and socket-based communication in embedded systems.	[L3][CO5]	[05 M]
7	Explain task synchronization and the issues faced during task communication.	[L2][CO5]	[10 M]
8	a) Explain other synchronization techniques used in embedded systems.	[L3][CO5]	[05 M]
	b) Explain the Shared Memory communication with Suitable diagram	[L2][CO3]	[05 M]
9	Explain the differences between cooperative and preemptive multitasking in RTOS.	[L2][CO5]	[10 M]
10	a) Explain the concept of priority-based task scheduling.	[L3][CO5]	[05 M]
	b) Explain the concept of round-robin scheduling.	[L3][CO5]	[05 M]
11	Explain how task communication and synchronization improve reliability and performance in an RTOS-based embedded system.	[L3][CO5]	[10M]